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Abstract—In wireless push systems, the server schedules the 
broadcasts of its information items aiming at satisfying the 
clients’ preferences efficiently. Latest research efforts have 
proposed adaptive push systems, enhanced with a learning 
automaton, in which the server has the ability to update its 
estimated item demand probability vector. This vector indicates 
the level of the items’ desirability. Even though the adaptive 
push systems are capable of operating in dynamic environments, 
where the item demand probability distribution changes 
periodically, the time that the learning automaton needs to 
adapt its estimated probability vector to a new demand 
probability distribution leads to degradation of the system’s 
performance. This work addresses this problem, by applying the 
spline interpolation method to produce an estimation of the 
changed desirability immediately after this change takes place. 
A set of indicative feedback samples are collected by the server 
and the new item demand probability distribution function is 
approximated, providing the learning automaton with estimated 
item probabilities, as initial probabilities. Extensive simulation 
results indicate the superiority of the proposed scheme, in terms 
of mean response time. 

I. INTRODUCTION  

In the area of dissemination of information over 
asymmetric wireless networks, data broadcasting has 
appeared as an efficient way of satisfying a large number of 
clients in a cost efficient way. In applications like, traffic 
information, weather information, sightseeing guidelines, the 
broadcast of a single information item will probably satisfy a 
high number of clients as in such applications the client 
preferences are often overlapping following a common data 
demand distribution.  

In data broadcasting systems, the server owning a database 
of information items schedules its broadcasts aiming at 
serving the clients in the best efficient way. The three major 
approaches for designing broadcast schedules are the pull, the 
push and the hybrid one. In the pull (or on-demand) approach 

[1, 2, 3, 4], the server exploits the client-requests in order to 
arrange the broadcast schedule. Despite the advantage of 
these systems in operating to dynamic and continuously 
altering client demands, they are not scalable for large client 
populations as client requests will either collide with each 
other or saturate the server. In the push systems [5, 6, 7], on 
the other hand, the server is considered to have an a-priori 
estimation of the client demands and schedules its broadcasts 
according to these estimates. Contrary to the pull approach, 
the “pure” push systems provide high scalability and client 
hardware simplicity but are unable to operate efficiently in 
environments with a-priori unknown and dynamic client 
demands. This weakness is overcome by adaptive push 
systems [8, 9, 10] that achieve efficient operation in such 
environments using a learning automaton [11] at the 
broadcast server in order to provide adaptivity to the overall 
client population demands and reflect the overall popularity 
of each data item. Finally, hybrid systems (e.g. [12]) try to 
combine the benefits of the pure-push and pure-pull 
approaches. In this paper, we will focus on the adaptive push-
based approach of [8]. 

The system of [8] conserves estimates of the demand 
probability for each item and uses a learning automaton to 
adapt its broadcast schedule to the client demands. After each 
item broadcast, every satisfied client sends to the server a 
feedback and the server’s automaton uses the clients’ 
feedbacks for its adaption procedure. 

In this paper, we examine the impact of learning process 
delay on the operation of the push system. Given that demand 
probabilities may change as and when new clients subscribe 
the broadcast service or existing clients unsubscribe or even 
the region coverage of the system’s antenna changes, the 
learning automaton has to adapt to the new demand 



probabilities as soon as possible, for the sake of efficiency.  
The aforementioned adaptive schemes [8, 9, 10] present a 
major weakness: they infer a serious degradation of the 
system’s performance due to the time that the learning 
process of the automaton needs to adjust to the new item 
demand distribution. In order to address this problem, a novel 
adaptive scheme is proposed that utilizes the spline 
interpolation technique to speed up the learning process by 
providing the server with an estimated set of the new demand 
probability distribution based on the function approximation 
of the new distribution. 

The remainder of the paper is organised as follows: Section 
II presents the adaptive push framework, Section III presents 
the novel adaptive scheme, and simulation results are 
presented in Section IV. Finally, Section V concludes the 
paper.  

II. THE ADAPTIVE PUSH FRAMEWORK 

Learning automata [11] are mechanisms that are able to 
learn the characteristics of a system’s environment. A 
Learning Automaton is an automaton that improves its 
performance by interacting with the random environment in 
which it operates.  

In the adaptive push system of [8], the broadcast server is 
equipped with a learning automaton that contains the server’s 

estimate est
ip  of the demand probability ip  for each data 

item i that the server broadcasts, assuming that the number of 

the data items is equal to M. Apparently, it holds 
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Assuming that T is the current time and R(i) is the time 
when item i was last broadcast, for each broadcast, the server 
selects to transmit the item i that maximizes the cost 
function[6]: 

2
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where est
ip  is the demand probability for item i, li  is the 

item’s length, E(li) is the probability that an item of length li 
is received with an unrecoverable error, R(i) is initialized to -
1. Upon the broadcast of item i at time T, R(i)  is changed so 
that R(i)=T.  

After the transmission of item i, server waits for 
acknowledgement from every client that was waiting item i. 
This means that each client who is satisfied with the server’s 
last broadcast transmits a feedback to the server. 

Using the client feedbacks (votes), the server’s automaton 
continuously adapts to the overall client population demands 
in order to reflect the overall popularity of each data item. 
The operation of the learning automaton is given by the 
equation below: 
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It holds that , a (0,1) L ∈ and [ ]1, ...,( ) (a,1),  est
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L is a parameter that governs the speed of the automaton 
convergence and the role of parameter a is to prevent the 
probabilities of unpopular items from taking values in the 
neighbourhood of zero. Upon reception of the clients’ 
feedbacks, this number of feedbacks is normalized in the 

interval of [0,1]. ( ) 1Fb k
number of  received feedbacks

total number of  clients
= −  

is the system environmental response that is triggered after the 
server’s kth transmission.   

III. THE PROPOSED SCHEME 

A. The System Architecture 

The system consists of one base station and a number of Cl 
clients. The base station is equipped with one antenna and a 
database of M different data items. The base station 
broadcasts the server’s data items while clients respond 
(“vote”) to the server’s broadcasts. 

For the uplink communication, a CDMA coding has been 
chosen [13, 14]. After the broadcast of an item that has been 
expected from a client, the client’s software application sends 
automatically its “vote” (i.e. one bit) to the base station using 
a user-specific high-speed code (Long code). At the receiver 
end (base station), signals are separated by using a correlator 
(rake receiver) which only accepts signals energy from the 
specific client’s long code and despreads its spectrum. Other 
co-user signals remain spread because their spreading 
algorithm is uncorrelated with the desired signal’s algorithm 
and they appear as noise. The CDMA technique for the 
voting procedure has also been used in [10].  

 

B. Motivation 

One of the most important issues regarding the learning 
automata operation is the speed that the automaton adapts to 
the dynamic changes of the clients’ item preferences. As 
mentioned on Section II, the learning automaton interacts 
with the environment and chooses an action (an item to 
broadcast in our case) based on its item demand probability 
vector. Using the response of the environment (clients’ 
feedbacks) to a selected item, the automaton updates its item 
demand probability vector. A new item is then selected 
according to the updated probability vector and equation 1. If 
the item demand probability distribution of the automaton’s 
database (estimated item demand probability distribution) is 
equal or nearly equal to the actual probability distribution 
(actual item demand probabilities) then it is assumed that the 
automaton has converged and then it selects the best (or 
nearly optimal) action. The adaptation speed could be defined 
as the necessary time that the automaton needs to reach the 
optimal (or nearly optimal) actions. Eventually, this metric is 



really important to real environments, since the automaton 
may take wrong or erroneous decisions until it reaches the 
environment’s item demands, degrading the network 
performance. So far, approaches for adaptive broadcasting 
scheduling [8, 9, 10] do not take into account the adaptation 
speed, when the clients’ demands change dynamically and a 
new actual item demand probability distribution is formed. 
The main contribution of the proposed scheme is to reduce 
this negative impact. In other words, this work intends to 
boost the learning process, giving to the automaton an 
indicative “image” of the new demand status that has just 
stated. 

In order to evaluate the aforemetioned negative impact, we 
examined the performance of the previous adaptive push 
system [8], under successive environment modifications of 
the actual item demand probabilities. Figure 1 illustrates the 
indicative findings from our initial simulations. This 
experiment was conducted with the following assumptions: 
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Fig. 1. The evaluation of the adaptive push system of [8] based on indicative 
simulation results in terms of mean response time.  
 

• The network consists of 3000 clients. 
• The available M database items are 50. 
• The actual item demand probability distribution follows the 
Zipf distribution. More details about the adopted Zipf 
equation can be found in Section IV.  
• The clients’ item demand distribution is modified every 
1000 broadcasts. In practice a different value of parameter θ 
is applied on the Zipf equation, which is produced in a 
random way. 
• The network performance is given by the mean response 
time metric. 

 
As it is evident from the figure, the network performance is 

degraded after each environment change (the time that each 
change happens is noted by the dotted line), causing, at the 
most cases, high rates of response time. For example, the 
mean response time is dramatically increased, after the first 
environment change that takes place at the 1000th broadcast . 
This has been caused because the actual item demand 
probability distribution has changed after the 1000th broadcast 
and the learning automaton still selects items for the 
following broadcasts based on the previous estimated demand 
probabilities. Only after the 1420th broadcast the network 
performance seems to be improved, since the adaptation 
procedure to the new characteristics of the environment has 
progressed. Apparently, this modification comes in reality by 

applying a different value of parameter θ in the Zipf equation. 
The problem lies exactly at the critical time period that is 
needed for the learning automaton to update its recorded 
probability distribution vector and subsequently to be able to 
take the optimal decisions. Eventually, the delay of the 
learning automaton’s adaptivity reduces the network 
performance. If a boosting mechanism could be applied to the 
learning process, the automaton could take more accurate 
actions regarding the actual client demands in a shorter time. 
This is the aim of proposed scheme. 
 

C. The novel adaptive push system 

The target of the proposed scheme is to speed up the 
learning process of the automaton. In order to achieve this 
goal, the algorithm utilizes scattered data interpolation with 
splines. Scattered data interpolation refers to the problem of 
fitting a smooth surface through a scattered, or non-unifrom, 
distribution of data samples [15]. The goal of interpolation is 
to define an underlying function that may be evaluated at any 
desired set of positions. These positions are formed by the 
scattered data that the algorithm deliberately acquires from 
the environment. More specifically, the learning automaton 
utilizes an update mechanism after each environment change, 
broadcasting a set of indicative number of items to form a set 
of scattered positions. Then the curve of the estimated item 
probability distribution is computed based on the approximate 
data points with the aim of the spline interpolation technique. 
The cubic spline interpolation technique has been chosen due 
to many practical advantages such its minimum curvature 
property, its high-quality interpolation, simple representation, 
smoothness etc [16, 17]. 

In the case that the client population changes the update 
algorithm is triggered. According to this algorithm, the server 
broadcasts a set of specific items, called representative items, 
in a round robin fashion to the clients and collects their 
feedbacks. Then the cubic spline interpolation is applied to 
the collected feedbacks and the function that gives the item 
demand probability distribution is approximated. The set of 

the representative items, denoted by repM  is a subset of the 

whole items, hence it holds MM rep
⊂ . The items that 

form the repM  set are chosen uniformly from the whole set 
M according to the following 

formula, } ,  ,{ MiieachforiMODfM rep
∈= , where f is 

the frequency factor, which denotes the plurality of the 
representative samples. Obviously, the factor f specifies the 
accuracy of the interpolation method, since a set of larger 
samples leads to more accurate function approximation [18, 
19]. For instance, if the M set consists of 100 items and the 

factor f is equal to 10, then the repM  set consists of 10 items. 
The server collects the feedbacks, coming from each 
broadcast and in the next step the cubic spline interpolation is 
applied in the feedback samples and a function approximation 

is made based on the repM  samples. The update algorithm is 
described in Algorithm1. 

 



 
 
Algorithm 1: Update Algorithm 
 

1. Define the set of items, denoted by M 
2. Calculate the set of the representative items, denoted 

by repM , by applying the following formula: 

{ ,   ,  }repM iMODf for each i i M= ∈  

3. Broadcast the set of repM  representative items in a 
round robin fashion. 
4. Get the feedback of each broadcast, denoted by the 
Fb  set, in the following manner: 

1 1 2 2  ,   ...rep repfb for i fb for i , where 

1 2 1 2, ... ,   ...rep rep repfb fb Fb i and i M∈ ∈ . 

5. Apply the cubic spline interpolation method in the Fb 
set and produce the approximation function F. 
6. Following the approximation function F calculate the 
estimated item demand probability value for each item. 

 
 

The core broadcast scheduling algorithm is described in 
Algorithm 2.  

 
Algorithm 2: Broadcast scheduling algorithm 

 
1. The server chooses to transmit the item i that 
maximises the cost function as it has been defined in 
section II: 

2
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2.   Each satisfied client sends to the server its feedback. 
3. The learning automaton’s estimation probability 

vector estp  is updated, using the received clients’ 
feedbacks Fbi, as it has been defined in section II. 
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IV.  

IV. THE SIMULATION ENVIRONMENT 

The server contains a database of M equally-sized items, 
with item length l, being equal to the unit. A population of Cl 
clients is considered. Each client may demand (prefer) a data 

item with item demand probability equal to ip . The clients’ 

item demand probability ip  for each item in place i is 

computed via the Zipf distribution:  

1
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,  where 

M is the number of database items  and θ  is the item demand 
skew coefficient. 

The environment changes the item demand probability 
vector (parameter θ ) (a) every 1000 broadcasts and (b) 
randomly. The number of the representative items of the set 

of repM  is set equal to 10% of the M set. 
The broadcasts are subject to reception errors, with 

unrecoverable errors per instance of an item occurring, 
according to a Poisson process with rate λ . Thus, 

 1E e λ−
= − is the probability that an item is received with an 

unrecoverable error. The simulation runs until the server 
broadcasts Broad  items.  

The proposed scheme that uses a combination of cubic 
spline interpolation and a learning automaton is compared 
with the system of [8] that uses only the core learning 
automata mechanism. 

The experiments are performed in a simulator coded in 
Matlab. The simulation results presented in this section are 
obtained with the following values to the parameters: 
Cl=3000, Broad=10000,  0.1λ = , L=0.15 and a= 410 − .  
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Fig. 2. Mean response time in a system with 50 items. The item demand 
probability changes every 1000 broadcasts.  
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Fig. 3. Mean response time in a system with 100 items. The item demand 
probability changes every 1000 broadcasts. 
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Fig. 4. Mean response time in a system with 150 items. The item demand 
probability changes every 1000 broadcasts. 
 
 

Figures 2-4 display the mean response time that the two 
compared schemes achieve for three networks with the 
number of items M being equal to 50, 100 and 150, 
respectively. In all of these networks, the item demand 
probability vector (parameter θ  of the item demand Zipf 
distribution) varies every 1000 server’s broadcasts (i.e. 
1000th, 2000th, 3000th etc. ). After each change of parameter 
θ , the mean response is calculated every 200 broadcasts or at 
the time that a new change of parameter θ  happens. Upon 
the change of the item demand probability, the calculation of 
mean response time restarts without taking into consideration 
its previous value. This happens in order to take a clear 
picture of how fast the proposed interpolation-based scheme 
adapts to the new client demands after each item demand 
probability change in compare to the scheme of [8] (how fast 
the estimated probability values in the learning automaton 
converge to the clients’ preferences). Observing the above 
figures, it is obvious that the proposed scheme achieves lower 
response time than the one of the core learning automata 
scheme due to the usage of interpolation method. In other 
words, after each item demand change, the proposed scheme 
obtains almost immediately a quite accurate estimation of the 
new demand probability vector. Then, this estimation is 
continuously improved through the classic updating 
probability mechanism of the learning automata operation. 
On the contrary, the adaptation time of the system of [8] to 
the environment preferences is much higher (especially when 
dense item demand changes happens) because the adaptation 
mechanism is based exclusively on the updating probability 
mechanism of the learning automata operation. The observed 
delay of the adaptation process that happens in the core 
automata scheme infers the low-performed curve, which 
reflects the higher response time compared to the 
interpolation-based scheme.  

Figures 5-7 depict the performance of the two compared 
schemes in terms of mean response time, when the item 
demand probability vector (parameter θ  of the item demand 
Zipf distribution) alters in random time periods (the time 
units that parameter θ  changes is noted with the dotted line). 
In these three networks, the number of items is set to 50, 100 
and 150, respectively. The mean response time is calculated 
in the same way as it was described above. For example if the  
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Fig. 5. Mean response time in a system with 50 items. The item demand 
probability changes randomly. 
 
 

the first change happens at the 1023rd   broadcast and the next 
at the 1589th , the response time is calculated at 1023rd , 
1223rd , 1423rd and 1589th broadcast. These figures, also, 
reveal the superiority of the suggested scheme, as it achieves 
lower mean response time during the entire simulation. It is 
noticeable, that after the 11th change of the item demand 
probability, the response time of the core learning automata 
scheme approaches enough the one of the proposed scheme. 
This is predictable as the time between the 11th and 12th is 
quite enough for the learning automaton to adapt to the new 
item demand probabilities. On the other hand, the core 
learning automaton scheme fails to adapt adequately 
concerning the frequent changes of parameter θ  (e.g. 3st to 
4nd, 4st to 5nd ). 
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Fig. 6. Mean response time in a system with 100 items. The item demand 
probability changes randomly. 
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Fig. 7. Mean response time in a system with 150 items. The item demand 
probability changes randomly. 
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Fig. 8. The overall mean response time of the system where the item demand 
probability changes every 1000 broadcasts. 
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Fig. 9. The overall mean response time of the system where the item demand 
probability changes randomly. 
 
 

Finally, figures 8 and 9 indicate that the proposed scheme 
achieves lower overall mean response time, calculated based 
on the total performance of the system at the end of the entire 
simulation procedure. 
 
 

V. CONCLUSION AND FUTURE WORK 
A new broadcast scheduling algorithm for wireless push 

systems was presented in the paper. The examined push 
system consists of a server and a set of clients. The server 
broadcasts data items and the satisfied clients respond with a 
feedback. This process allows the functionality of an adaptive 
component, realized by a learning automaton. Considering 
that demand probabilities may change as when new clients 
subscribe the broadcast service, or existing clients 
unsubscribe, the learning process adaptation speed may be a 
negative impact on the system performance. The proposed 
adaptive algorithm utilizes the spline interpolation technique 
in order to take a first estimation of the reformed demand 
probabilities by acquiring indicative feedback samples from 
the clients. The results of the conducted simulations prove the 
superiority of the suggested scheme, reducing the mean time 
that each client waits for a preferred item. Future work will 
include design of strategies for operating in an environment, 

in which the time of the client demand changes will be 
unknown to the server. 
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