
Speeding Up the Adaption Process in Adaptive
Wireless Push Systems by Applying Spline

Interpolation Technique

V. L. Kakali1, P. G. Sarigiannidis2, Member, IEEE, G. I. Papadimitriou3, Senior Member, IEEE, and A. S. Pomportsis4

Department of Informatics,

Aristotle University of Thessaloniki,

Box 888, 54124, Thessaloniki, Greece
1 vicky198@csd.auth.gr, 2 sarpan@csd.auth.gr, 3 gp@csd.auth.gr, 4 apompo@csd.auth.gr

Abstract—In wireless push systems, the server schedules the
broadcasts of its information items aiming at satisfying the
clients’ preferences efficiently. Latest research efforts have
proposed adaptive push systems, enhanced with a learning
automaton, in which the server has the ability to update its
estimated item demand probability vector. This vector indicates
the level of the items’ desirability. Even though the adaptive
push systems are capable of operating in dynamic environments,
where the item demand probability distribution changes
periodically, the time that the learning automaton needs to
adapt its estimated probability vector to a new demand
probability distribution leads to degradation of the system’s
performance. This work addresses this problem, by applying the
spline interpolation method to produce an estimation of the
changed desirability immediately after this change takes place.
A set of indicative feedback samples are collected by the server
and the new item demand probability distribution function is
approximated, providing the learning automaton with estimated
item probabilities, as initial probabilities. Extensive simulation
results indicate the superiority of the proposed scheme, in terms
of mean response time.

I. INTRODUCTION

In the area of dissemination of information over
asymmetric wireless networks, data broadcasting has
appeared as an efficient way of satisfying a large number of
clients in a cost efficient way. In applications like, traffic
information, weather information, sightseeing guidelines, the
broadcast of a single information item will probably satisfy a
high number of clients as in such applications the client
preferences are often overlapping following a common data
demand distribution.

In data broadcasting systems, the server owning a database
of information items schedules its broadcasts aiming at
serving the clients in the best efficient way. The three major
approaches for designing broadcast schedules are the pull, the
push and the hybrid one. In the pull (or on-demand) approach

[1, 2, 3, 4], the server exploits the client-requests in order to
arrange the broadcast schedule. Despite the advantage of
these systems in operating to dynamic and continuously
altering client demands, they are not scalable for large client
populations as client requests will either collide with each
other or saturate the server. In the push systems [5, 6, 7], on
the other hand, the server is considered to have an a-priori
estimation of the client demands and schedules its broadcasts
according to these estimates. Contrary to the pull approach,
the “pure” push systems provide high scalability and client
hardware simplicity but are unable to operate efficiently in
environments with a-priori unknown and dynamic client
demands. This weakness is overcome by adaptive push
systems [8, 9, 10] that achieve efficient operation in such
environments using a learning automaton [11] at the
broadcast server in order to provide adaptivity to the overall
client population demands and reflect the overall popularity
of each data item. Finally, hybrid systems (e.g. [12]) try to
combine the benefits of the pure-push and pure-pull
approaches. In this paper, we will focus on the adaptive push-
based approach of [8].

The system of [8] conserves estimates of the demand
probability for each item and uses a learning automaton to
adapt its broadcast schedule to the client demands. After each
item broadcast, every satisfied client sends to the server a
feedback and the server’s automaton uses the clients’
feedbacks for its adaption procedure.

In this paper, we examine the impact of learning process
delay on the operation of the push system. Given that demand
probabilities may change as and when new clients subscribe
the broadcast service or existing clients unsubscribe or even
the region coverage of the system’s antenna changes, the
learning automaton has to adapt to the new demand

probabilities as soon as possible, for the sake of efficiency.
The aforementioned adaptive schemes [8, 9, 10] present a
major weakness: they infer a serious degradation of the
system’s performance due to the time that the learning
process of the automaton needs to adjust to the new item
demand distribution. In order to address this problem, a novel
adaptive scheme is proposed that utilizes the spline
interpolation technique to speed up the learning process by
providing the server with an estimated set of the new demand
probability distribution based on the function approximation
of the new distribution.

The remainder of the paper is organised as follows: Section
II presents the adaptive push framework, Section III presents
the novel adaptive scheme, and simulation results are
presented in Section IV. Finally, Section V concludes the
paper.

II. THE ADAPTIVE PUSH FRAMEWORK

Learning automata [11] are mechanisms that are able to
learn the characteristics of a system’s environment. A
Learning Automaton is an automaton that improves its
performance by interacting with the random environment in
which it operates.

In the adaptive push system of [8], the broadcast server is
equipped with a learning automaton that contains the server’s

estimate est
ip of the demand probability ip for each data

item i that the server broadcasts, assuming that the number of

the data items is equal to M. Apparently, it holds
1

1
M

i
i

p
=

=∑

and
1

1
M

i

est
ip

=

=∑ .

Assuming that T is the current time and R(i) is the time
when item i was last broadcast, for each broadcast, the server
selects to transmit the item i that maximizes the cost
function[6]:

2
() (()) (1 ()) (1 ()) , 1 i M()i i i i

est
CF i T R i E l E lp l= − + − ≤ ≤ (1)

where est
ip is the demand probability for item i, li is the

item’s length, E(li) is the probability that an item of length li
is received with an unrecoverable error, R(i) is initialized to -
1. Upon the broadcast of item i at time T, R(i) is changed so
that R(i)=T.

After the transmission of item i, server waits for
acknowledgement from every client that was waiting item i.
This means that each client who is satisfied with the server’s
last broadcast transmits a feedback to the server.

Using the client feedbacks (votes), the server’s automaton
continuously adapts to the overall client population demands
in order to reflect the overall popularity of each data item.
The operation of the learning automaton is given by the
equation below:

(1) () (1 ()) (() a), j i

(1) () (1 ()) (() a)

est est est

j j j

est est est

i i j
i j

p k p k L Fb k p k

p k p k L Fb k p k
≠

+ = − − − ∀ ≠

+ = + − −∑
 (2)

It holds that , a (0,1) L ∈ and []1, ...,() (a,1), est
i Mp k i∈ ∀ ∈ ,

L is a parameter that governs the speed of the automaton
convergence and the role of parameter a is to prevent the
probabilities of unpopular items from taking values in the
neighbourhood of zero. Upon reception of the clients’
feedbacks, this number of feedbacks is normalized in the

interval of [0,1]. () 1Fb k
number of received feedbacks

total number of clients
= −

is the system environmental response that is triggered after the
server’s kth transmission.

III. THE PROPOSED SCHEME

A. The System Architecture

The system consists of one base station and a number of Cl
clients. The base station is equipped with one antenna and a
database of M different data items. The base station
broadcasts the server’s data items while clients respond
(“vote”) to the server’s broadcasts.

For the uplink communication, a CDMA coding has been
chosen [13, 14]. After the broadcast of an item that has been
expected from a client, the client’s software application sends
automatically its “vote” (i.e. one bit) to the base station using
a user-specific high-speed code (Long code). At the receiver
end (base station), signals are separated by using a correlator
(rake receiver) which only accepts signals energy from the
specific client’s long code and despreads its spectrum. Other
co-user signals remain spread because their spreading
algorithm is uncorrelated with the desired signal’s algorithm
and they appear as noise. The CDMA technique for the
voting procedure has also been used in [10].

B. Motivation

One of the most important issues regarding the learning
automata operation is the speed that the automaton adapts to
the dynamic changes of the clients’ item preferences. As
mentioned on Section II, the learning automaton interacts
with the environment and chooses an action (an item to
broadcast in our case) based on its item demand probability
vector. Using the response of the environment (clients’
feedbacks) to a selected item, the automaton updates its item
demand probability vector. A new item is then selected
according to the updated probability vector and equation 1. If
the item demand probability distribution of the automaton’s
database (estimated item demand probability distribution) is
equal or nearly equal to the actual probability distribution
(actual item demand probabilities) then it is assumed that the
automaton has converged and then it selects the best (or
nearly optimal) action. The adaptation speed could be defined
as the necessary time that the automaton needs to reach the
optimal (or nearly optimal) actions. Eventually, this metric is

really important to real environments, since the automaton
may take wrong or erroneous decisions until it reaches the
environment’s item demands, degrading the network
performance. So far, approaches for adaptive broadcasting
scheduling [8, 9, 10] do not take into account the adaptation
speed, when the clients’ demands change dynamically and a
new actual item demand probability distribution is formed.
The main contribution of the proposed scheme is to reduce
this negative impact. In other words, this work intends to
boost the learning process, giving to the automaton an
indicative “image” of the new demand status that has just
stated.

In order to evaluate the aforemetioned negative impact, we
examined the performance of the previous adaptive push
system [8], under successive environment modifications of
the actual item demand probabilities. Figure 1 illustrates the
indicative findings from our initial simulations. This
experiment was conducted with the following assumptions:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

of broadcasts

m
ea

n
 r

es
p

o
n

se
 t

im
e

automata

Fig. 1. The evaluation of the adaptive push system of [8] based on indicative
simulation results in terms of mean response time.

• The network consists of 3000 clients.
• The available M database items are 50.
• The actual item demand probability distribution follows the
Zipf distribution. More details about the adopted Zipf
equation can be found in Section IV.
• The clients’ item demand distribution is modified every
1000 broadcasts. In practice a different value of parameter θ
is applied on the Zipf equation, which is produced in a
random way.
• The network performance is given by the mean response
time metric.

As it is evident from the figure, the network performance is

degraded after each environment change (the time that each
change happens is noted by the dotted line), causing, at the
most cases, high rates of response time. For example, the
mean response time is dramatically increased, after the first
environment change that takes place at the 1000th broadcast .
This has been caused because the actual item demand
probability distribution has changed after the 1000th broadcast
and the learning automaton still selects items for the
following broadcasts based on the previous estimated demand
probabilities. Only after the 1420th broadcast the network
performance seems to be improved, since the adaptation
procedure to the new characteristics of the environment has
progressed. Apparently, this modification comes in reality by

applying a different value of parameter θ in the Zipf equation.
The problem lies exactly at the critical time period that is
needed for the learning automaton to update its recorded
probability distribution vector and subsequently to be able to
take the optimal decisions. Eventually, the delay of the
learning automaton’s adaptivity reduces the network
performance. If a boosting mechanism could be applied to the
learning process, the automaton could take more accurate
actions regarding the actual client demands in a shorter time.
This is the aim of proposed scheme.

C. The novel adaptive push system

The target of the proposed scheme is to speed up the
learning process of the automaton. In order to achieve this
goal, the algorithm utilizes scattered data interpolation with
splines. Scattered data interpolation refers to the problem of
fitting a smooth surface through a scattered, or non-unifrom,
distribution of data samples [15]. The goal of interpolation is
to define an underlying function that may be evaluated at any
desired set of positions. These positions are formed by the
scattered data that the algorithm deliberately acquires from
the environment. More specifically, the learning automaton
utilizes an update mechanism after each environment change,
broadcasting a set of indicative number of items to form a set
of scattered positions. Then the curve of the estimated item
probability distribution is computed based on the approximate
data points with the aim of the spline interpolation technique.
The cubic spline interpolation technique has been chosen due
to many practical advantages such its minimum curvature
property, its high-quality interpolation, simple representation,
smoothness etc [16, 17].

In the case that the client population changes the update
algorithm is triggered. According to this algorithm, the server
broadcasts a set of specific items, called representative items,
in a round robin fashion to the clients and collects their
feedbacks. Then the cubic spline interpolation is applied to
the collected feedbacks and the function that gives the item
demand probability distribution is approximated. The set of

the representative items, denoted by repM is a subset of the

whole items, hence it holds MM rep
⊂ . The items that

form the repM set are chosen uniformly from the whole set
M according to the following

formula, } , ,{ MiieachforiMODfM rep
∈= , where f is

the frequency factor, which denotes the plurality of the
representative samples. Obviously, the factor f specifies the
accuracy of the interpolation method, since a set of larger
samples leads to more accurate function approximation [18,
19]. For instance, if the M set consists of 100 items and the

factor f is equal to 10, then the repM set consists of 10 items.
The server collects the feedbacks, coming from each
broadcast and in the next step the cubic spline interpolation is
applied in the feedback samples and a function approximation

is made based on the repM samples. The update algorithm is
described in Algorithm1.

Algorithm 1: Update Algorithm

1. Define the set of items, denoted by M
2. Calculate the set of the representative items, denoted

by repM , by applying the following formula:

{ , , }repM iMODf for each i i M= ∈

3. Broadcast the set of repM representative items in a
round robin fashion.
4. Get the feedback of each broadcast, denoted by the
Fb set, in the following manner:

1 1 2 2 , ...rep repfb for i fb for i , where

1 2 1 2, ... , ...rep rep repfb fb Fb i and i M∈ ∈ .

5. Apply the cubic spline interpolation method in the Fb
set and produce the approximation function F.
6. Following the approximation function F calculate the
estimated item demand probability value for each item.

The core broadcast scheduling algorithm is described in
Algorithm 2.

Algorithm 2: Broadcast scheduling algorithm

1. The server chooses to transmit the item i that
maximises the cost function as it has been defined in
section II:

2
() (()) (1 ()) (1 ()) , 1 i M()i i i i

est
CF i T R i E l E lp l= − + − ≤ ≤

2. Each satisfied client sends to the server its feedback.
3. The learning automaton’s estimation probability

vector estp is updated, using the received clients’
feedbacks Fbi, as it has been defined in section II.

(1) () (1 ()) (() a), j i

(1) () (1 ()) (() a)

est est est

j j j

est est est

i i j

i

i
i j

p k p k L Fb k p k

p k p k L Fb k p k
≠

+ = − − − ∀ ≠

+ = + − −∑

IV.

IV. THE SIMULATION ENVIRONMENT

The server contains a database of M equally-sized items,
with item length l, being equal to the unit. A population of Cl
clients is considered. Each client may demand (prefer) a data

item with item demand probability equal to ip . The clients’

item demand probability ip for each item in place i is

computed via the Zipf distribution:

1
ip c

i

θ

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 , where []

i

1
c = , k 1..M

1

i

θ
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

, where

M is the number of database items and θ is the item demand
skew coefficient.

The environment changes the item demand probability
vector (parameter θ) (a) every 1000 broadcasts and (b)
randomly. The number of the representative items of the set

of repM is set equal to 10% of the M set.
The broadcasts are subject to reception errors, with

unrecoverable errors per instance of an item occurring,
according to a Poisson process with rate λ . Thus,

 1E e λ−
= − is the probability that an item is received with an

unrecoverable error. The simulation runs until the server
broadcasts Broad items.

The proposed scheme that uses a combination of cubic
spline interpolation and a learning automaton is compared
with the system of [8] that uses only the core learning
automata mechanism.

The experiments are performed in a simulator coded in
Matlab. The simulation results presented in this section are
obtained with the following values to the parameters:
Cl=3000, Broad=10000, 0.1λ = , L=0.15 and a= 410 − .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

of broadcasts

m
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e

automata
interpolated automata

Fig. 2. Mean response time in a system with 50 items. The item demand
probability changes every 1000 broadcasts.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

of broadcasts

m
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e

automata
interpolated automata

Fig. 3. Mean response time in a system with 100 items. The item demand
probability changes every 1000 broadcasts.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

of broadcasts

m
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e

automata
interpolated automata

Fig. 4. Mean response time in a system with 150 items. The item demand
probability changes every 1000 broadcasts.

Figures 2-4 display the mean response time that the two
compared schemes achieve for three networks with the
number of items M being equal to 50, 100 and 150,
respectively. In all of these networks, the item demand
probability vector (parameter θ of the item demand Zipf
distribution) varies every 1000 server’s broadcasts (i.e.
1000th, 2000th, 3000th etc.). After each change of parameter
θ , the mean response is calculated every 200 broadcasts or at
the time that a new change of parameter θ happens. Upon
the change of the item demand probability, the calculation of
mean response time restarts without taking into consideration
its previous value. This happens in order to take a clear
picture of how fast the proposed interpolation-based scheme
adapts to the new client demands after each item demand
probability change in compare to the scheme of [8] (how fast
the estimated probability values in the learning automaton
converge to the clients’ preferences). Observing the above
figures, it is obvious that the proposed scheme achieves lower
response time than the one of the core learning automata
scheme due to the usage of interpolation method. In other
words, after each item demand change, the proposed scheme
obtains almost immediately a quite accurate estimation of the
new demand probability vector. Then, this estimation is
continuously improved through the classic updating
probability mechanism of the learning automata operation.
On the contrary, the adaptation time of the system of [8] to
the environment preferences is much higher (especially when
dense item demand changes happens) because the adaptation
mechanism is based exclusively on the updating probability
mechanism of the learning automata operation. The observed
delay of the adaptation process that happens in the core
automata scheme infers the low-performed curve, which
reflects the higher response time compared to the
interpolation-based scheme.

Figures 5-7 depict the performance of the two compared
schemes in terms of mean response time, when the item
demand probability vector (parameter θ of the item demand
Zipf distribution) alters in random time periods (the time
units that parameter θ changes is noted with the dotted line).
In these three networks, the number of items is set to 50, 100
and 150, respectively. The mean response time is calculated
in the same way as it was described above. For example if the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

20

40

60

80

100

of broadcasts

m
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e

automata
interpolated automata

Fig. 5. Mean response time in a system with 50 items. The item demand
probability changes randomly.

the first change happens at the 1023rd broadcast and the next
at the 1589th , the response time is calculated at 1023rd ,
1223rd , 1423rd and 1589th broadcast. These figures, also,
reveal the superiority of the suggested scheme, as it achieves
lower mean response time during the entire simulation. It is
noticeable, that after the 11th change of the item demand
probability, the response time of the core learning automata
scheme approaches enough the one of the proposed scheme.
This is predictable as the time between the 11th and 12th is
quite enough for the learning automaton to adapt to the new
item demand probabilities. On the other hand, the core
learning automaton scheme fails to adapt adequately
concerning the frequent changes of parameter θ (e.g. 3st to
4nd, 4st to 5nd).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

20

40

60

80

100

120

140

160

180

200

of broadcats

m
ea

n
 r

es
p

o
n

se
 t

im
e

automata
interpolated automata

Fig. 6. Mean response time in a system with 100 items. The item demand
probability changes randomly.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

50

100

150

200

250

of broadcasts

m
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e

automata
interpolated automata

Fig. 7. Mean response time in a system with 150 items. The item demand
probability changes randomly.

50 items 100 items 150 items
0

20

40

60

80

100

120

o
ve

ra
ll

m
ea

n
 r

es
p

o
n

se
 t

im
e

automaton
interpolated automaton

Fig. 8. The overall mean response time of the system where the item demand
probability changes every 1000 broadcasts.

50 items 100 items 150 items
0

50

100

150

 o
ve

ra
ll

m
ea

n
 r

es
p

o
n

se
 t

im
e

automaton
interpolated automaton

Fig. 9. The overall mean response time of the system where the item demand
probability changes randomly.

Finally, figures 8 and 9 indicate that the proposed scheme
achieves lower overall mean response time, calculated based
on the total performance of the system at the end of the entire
simulation procedure.

V. CONCLUSION AND FUTURE WORK
A new broadcast scheduling algorithm for wireless push

systems was presented in the paper. The examined push
system consists of a server and a set of clients. The server
broadcasts data items and the satisfied clients respond with a
feedback. This process allows the functionality of an adaptive
component, realized by a learning automaton. Considering
that demand probabilities may change as when new clients
subscribe the broadcast service, or existing clients
unsubscribe, the learning process adaptation speed may be a
negative impact on the system performance. The proposed
adaptive algorithm utilizes the spline interpolation technique
in order to take a first estimation of the reformed demand
probabilities by acquiring indicative feedback samples from
the clients. The results of the conducted simulations prove the
superiority of the suggested scheme, reducing the mean time
that each client waits for a preferred item. Future work will
include design of strategies for operating in an environment,

in which the time of the client demand changes will be
unknown to the server.

REFERENCES

[1] D.Aksou and M.Frankin, “RxW: A Schedualing Approach for Large-

Scale On-Demand Data Broadcast”, ACM/IEEE Transactions on
Networking vol.7, no.6, pp.846-860, December 1999.

[2] W. Sun, W. Shi and B.Shi, “A Cost Efficient Scheduling Algorithm of
On-Demand Broadcasts”, Wireless Networks, vol.9, no.3, pp.239-247,
May 2003.

[3] Xiao Wu and Victor C. S. Lee, “Preemptive Maximum Stretch
Optimization Scheduling for Wireless On–Demand Data Broadcast”,
IEEE Proceedings of the International Database Engineering and
Applications Symposium, 2004.

[4] Peter Triantafillou, R. Harpantidou and M. Paterakis, “High
Performance Data Broadcasting Systems”, Kluwer Mobile Networks
and Applications 7, 279–290, 2002.

[5] S. Acharya, M Franklin, and S.Zdonik, “Dissemination-based data
delivery using broadcast disks”, IEEE Pers. Commun., vol. 2, pp.50-
60, Dec. 1995.

[6] N.H.Vaidya and S.Hameed, “Scheduling Data Broadcast In
Asymmetric Communication Environments”, Wireless Networks,
vol.2, no.3, pp.171-182, May 1999.

[7] E.Yajima, T. Hara, M. Tsukamoto, S. Nishio, “Scheduling and caching
strategies for correlated data in push-based information systems”, ACM
SIGAPP Applied Computing Review, Vol. 9 , Issue 1, pp. 22-28,
2001.

[8] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “ Using
Learning Automata for Adaptive Push - Based Data Broadcasting
in Asymmetric Wireless Environments ”, IEEE Transactions on
Vehicular Technology, vol.51, no.6, pp.1652-1660, November 2002.

[9] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, ”Multiple
Antenna Data Broadcasting for Environments with Locality of
Demand”, IEEE Transactions on Vehicular Technology, vol.56, no.5,
pp.2807-2816, September 2007.

[10] Kakali, V. L., Papadimitriou, G. I., Nicopolitidis, P., Pomportsis, A.
S., “A New Class of Wireless Push Systems”, IEEE Trans. On
Vehicular Technology, vol. 58, issue 8, pp. 4529-4539, Oct. 2009.

[11] K. S. Narendra, M.A.L. Thathachar, “Learning Automata: An
Introduction”, Prentice-Hall, New Jersey, 1989.

[12] N. Vlajic, C.D. Charalambous and D.Makrakis, “Performance Aspects
of data Broadcast in Wireless Networks with User Retrials”,
IEEE/ACM Transactions on Networking, vol.12, no.4, pp.620-633,
August 2004.

[13] K. S. Gilhousen, I.M. Jacobs, R.Padovani, A.J. Viterbi, L. A. Weaver,
J. and C. E. Wheatley III, “On the capacity of a Cellular CDMA
System”, IEEE Trans. on Vehicular Technology, Vol.40, No.2, May
1991.

[14] C.Y.Lee, “Overview of Cellular CDMA”, IEEE Trans. on Vehicular
Technology, Vol.40, No.2, May 1991.

[15] S. Lee, G. Wolberg, S. Y. Shin, “Scattered Data Interpolation with
Multilevel B-Splines”, IEEE Trans. on Vilualization and Computer
Graphics, vol.3, no. 3, July-September 1997.

[16] M. Unser, "Splines: a perfect fit for signal and image processing," IEEE
Signal Processing Magazine, vol.16, no.6, pp.22-38, Nov. 1999.

[17] C. Gerald, P. Wheatley, "Applied Numerical Analysis", Addison-
Wesley Publishing Company, 2004.

[18] H. Yang, W. Wang, and J. Sun, "Control point adjustment for B-spline
curve approximation", Computer-Aided Design, Elsevier, Vol. 36, no.
7, pp.639-652 June 2004.

[19] R. Keys, "Cubic convolution interpolation for digital image
processing," IEEE Transactions on Acoustics, Speech and Signal
Processing, vol.29, no.6, pp. 1153-1160, Dec 1981.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

